Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.297
Filtrar
1.
Sci Rep ; 14(1): 8420, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600155

RESUMEN

In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.


Asunto(s)
Carbono , Saccharum , Carbono/análisis , Suelo/química , Celulosa , Carbón Orgánico/química , Nutrientes , India
2.
Environ Monit Assess ; 196(5): 469, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656433

RESUMEN

The potential of soil organic carbon fractions for agroforestry systems (AFSs) is not well understood. Five distinct AFSs were tested for its impact on soil organic carbon fractionation, carbon index, and microbial activity in North Eastern Himalayas, India. The mean labile carbon (LC) ranged from 4.55 to 5.43 kg soil-1 across the land use systems. Napier system observed the lowest very labile carbon (VLC) 12.36 kg soil-1 in 60-75-cm depth. The mean non labile carbon (NLC) ranged from 15.67 to 16.83 g kg soil-1 across the land use. Highest less labile carbon (LLC) was observed in agri-horti-silviculture (AHS) followed by agri-silvi-horticulture (ASH) land use system. The black gram + mandarin + Alnus nepalensis land use recorded higher lability index (1.66) followed by maize + Schima wallichii (1.65) in 0-15-cm depth. Among the different land use systems, carbon pool index increased in all the depths over buckwheat + mandarin. The mean carbon management index (CMI) value ranged from 167.02 to 210.12 among the land use system. The mean CMI was highest in black gram + mandarin + Alnus nepalensis (210.12) followed by soybean + Ficus hookerii + guava (191.56), maize + Schima wallichii (281.71), and lowest in buckwheat + mandarin (167.02). Among the AFSs, black gram + mandarin + Alnus nepalensis showed greater amount of carbon pool index, lability index, and carbon management index and, hence, considered the best sustainable agroforestry system to sequester more carbon in the Sikkim Himalaya. Such system also retained more different organic carbon fractions. The mean CMI value ranged from 167.02 to 210.12 among AFSs. Acid phosphatase activity was more during the rainy season followed by winter and summer season. Similar trends were followed by the urease activity in all the three seasons. Overall conclusion from this investigation is that SOC fractions, carbon index, and microbial activity levels are strongly influenced by the prevailing agroforestry systems.


Asunto(s)
Agricultura , Carbono , Monitoreo del Ambiente , Microbiología del Suelo , Suelo , India , Carbono/análisis , Suelo/química , Agricultura Forestal , 60479
3.
PeerJ ; 12: e17113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646486

RESUMEN

Peatland restoration usually aims at restarting the peatlands' function to store carbon within peat. The soil properties of the near-surface peat can give a first understanding of this process. Therefore, we sampled pH value, total organic carbon content (TOC), total nitrogen content (TN), C/N ratio as well as dry bulk density (BD), and describe the structure of near-surface peats in six restored fens in North-East Germany before (2002-2004) and after (2019-2021) restoration. Before restoration, the study sites showed peat degradation to various extents in their near-surface peats. pH values remained relatively stable over time. Comparing the degraded peat horizons, TOC increased significantly in four study sites, ranging from 35.7% to 47.8% in 2002-2004 and from 42.5% to 54.0% in 2019-2021. TN varied from 1.5% to 3.5% in 2002-2004 and from 1.8% to 3.2% in 2019-2021, but changes were only significant in one site, showing a slight decrease. In three sites, the increase in C/N ratio was significant, indicating lower nutrient availability. BD ranged from 0.08 to 0.48 g/cm3 in 2002-2004 and from 0.10 to 0.16 g/cm3 in 2019-2021, decreasing significantly in four sites. The structure of the degraded peat horizons changed after restoration to a more homogenous, sludge mass with larger re-aggregates. In three sites, new peat moss peat layers above the degraded soil horizon were present in 2019-2021, with a mean thickness of 6.8 to 36.1 cm. The structure was comparable to typical, slightly decomposed peat moss peat. Our findings suggest that within about 17 years after fen restoration, and thereby a water table rise close to surface, TOC of the near-surface peats increased to values that are typical for undisturbed peatlands. This indicates that restoration can lead to the re-establishment of peatlands as potential carbon sinks, with TOC within the near-surface peat as one key factor in this process. Further, we assume that the decrease in nutrient availability, decrease of BD, and new, undisturbed peat layers can favor the establishment of mire-specific biodiversity and support ecosystem services similar to near-natural mires.


Asunto(s)
Carbono , Nitrógeno , Suelo , Humedales , Suelo/química , Carbono/análisis , Nitrógeno/análisis , Alemania , Concentración de Iones de Hidrógeno , Restauración y Remediación Ambiental
4.
PLoS One ; 19(4): e0296787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635585

RESUMEN

In the context of green and sustainable development and rural revitalization, analysis of the relationship between economic development and the evolution of carbon metabolism is of great significance for China's future transformation of development models. This study analyzed the spatial characteristics and spatiotemporal evolution pattern of the decoupling status between carbon metabolism and economic development of Laiwu during two periods from 2001 to 2018 at the village and town unit scales by using the Tapio decoupling model. The results showed that the growth rate of carbon metabolism from 2001 to 2009 was significantly higher than that from 2009 to 2018. The spatial heterogeneity of the decoupling states between economic development and carbon metabolism from 2009 to 2018 was significantly stronger than that from 2001 to 2009 in two units. From 2001 to 2018, the development trend gradually trended towards spatial imbalance. The decoupling status between villages and towns had a high degree of consistency from 2001 to 2009 and inconsistency from 2009 to 2018. From 2001 to 2009, the decoupling status of about 78% of villages was consistent with that of towns. Moreover, from 2009 to 2018, the consistency reduced to 32.2%, and the decoupling status of about 48% of villages was weaker than that of towns. According to the reclassification results of different decoupling state change types, from 2001 to 2018, about 52.2% of the villages had a decoupling state evolution type of eco-deteriorated economic development, which is an unsatisfactory development trend in a short time. Moreover, about 12.1% of the villages had a decoupling state evolution type of eco-improved economic development, which is a satisfactory development trend.


Asunto(s)
Carbono , Desarrollo Económico , Humanos , Ciudades , Carbono/análisis , Población Rural , China , Dióxido de Carbono/análisis
5.
Sci Rep ; 14(1): 9445, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658691

RESUMEN

The carbon cycle in soil is significantly influenced by soil microbes. To investigate the vertical distribution of the dominant groups in agricultural soil and the carbon metabolic diversity of soil bacteria, 45 soil samples from the 0 ~ 50 cm soil layer in Hunan tobacco-rice multiple cropping farmland were collected in November 2017, and the carbon diversity of the soil bacterial community, bacterial community composition and soil physical and chemical properties were determined. The results showed that the carbon metabolic capabilities and functional diversity of the soil bacterial community decreased with depth. The three most widely used carbon sources for soil bacteria were carbohydrates, amino acids, and polymers. The dominant bacterial groups in surface soil (such as Chloroflexi, Acidobacteriota, and Bacteroidota) were significantly positively correlated with the carbon metabolism intensity. The alkali-hydrolysable nitrogen content, soil bulk density and carbon-nitrogen ratio were the key soil factors driving the differences in carbon metabolism of the soil bacterial communities in the different soil layers.


Asunto(s)
Bacterias , Carbono , Granjas , Microbiología del Suelo , Suelo , Carbono/metabolismo , Carbono/análisis , Bacterias/metabolismo , Bacterias/clasificación , Suelo/química , Biodiversidad , Nitrógeno/metabolismo , Nitrógeno/análisis , Ciclo del Carbono , Microbiota , Agricultura
6.
Environ Monit Assess ; 196(5): 462, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642132

RESUMEN

Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.


Asunto(s)
Suelo , Sorghum , Suelo/química , Carbono/análisis , Monitoreo del Ambiente , Agricultura , Grano Comestible/química
7.
Mar Environ Res ; 197: 106480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564848

RESUMEN

Impacts of river discharge on coastal ocean processes are multi-dimensional. Studies on sinking particle fluxes, composition and their seasonal variability in coastal oceans are very limited. In this study, we investigated the impact of river discharge on seasonal variability in sinking fluxes of total mass, biogenic and lithogenic material in a river-dominated continental margin, western coastal Bay of Bengal. Higher POC, lithogenic and total mass fluxes were found during early southwest monsoon, and are decoupled with peak river discharge and elevated primary production. It is attributed to cross-shelf transport of re-suspended surface sediments from shelf region. Peak river discharge followed by elevated chlorophyll-a suggest nutrients supply though river discharge support primary production. Elemental C:N ratios, δ13C and δ15N results likely suggest that both marine and terrestrial sources contributed to sinking POM, . Overall, higher sinking fluxes during southwest monsoon than rest of the year suggest that seasonal river discharge exerts considerable impact on sinking fluxes in the western coastal Bay of Bengal.


Asunto(s)
Bahías , Material Particulado , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Ríos , Carbono/análisis
8.
Mar Environ Res ; 197: 106476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609789

RESUMEN

Blue carbon ecosystems, such as mangrove, seagrass bed and salt marsh, have attracted increasing attention due to their remarkable capacity for efficient carbon sequestration. However, the current threat posed by human activities to these ecosystems necessitates the characterization of their changes and identification of the primary driving factors in order to facilitate the gradual restoration of blue carbon ecosystems. In this study, we present an analysis of the spatio-temporal characteristics and primary influencing factors governing carbon sequestration in mangrove and seagrass beds located in Hainan Island. The findings revealed a 40% decline in carbon sequestration by mangroves from 1976 to 2017, while seagrass beds exhibited a 13% decrease in carbon sequestering between 2009 and 2016. The decline in carbon sequestration was primarily concentrated in Wenchang city, with aquaculture and population growth identified as the primary driving factors. Despite the implementation of measures aimed at reducing aquaculture in Hainan Island to promote blue carbon sequestration over the past two decades, the resulting recovery remains insufficient in achieving macro-level goals for carbon sequestration. This study emphasizes the necessity of safeguarding blue carbon ecosystems in Hainan Island by effectively mitigating anthropogenic disturbances.


Asunto(s)
Secuestro de Carbono , Ecosistema , Humanos , Humedales , China , Carbono/análisis
9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646750

RESUMEN

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Asunto(s)
Carbono , Cunninghamia , Fagaceae , Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Suelo/química , Cunninghamia/crecimiento & desarrollo , Cunninghamia/metabolismo , Carbono/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/metabolismo , Fósforo/análisis , Fagaceae/crecimiento & desarrollo , Fagaceae/metabolismo , Leucil Aminopeptidasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Ecosistema , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Acetilglucosaminidasa/metabolismo , Fosfatasa Ácida/metabolismo , beta-Glucosidasa/metabolismo , China
10.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646751

RESUMEN

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Asunto(s)
Caragana , Carbono , Bosques , Nitrógeno , Compuestos Orgánicos , Fósforo , Suelo , China , Suelo/química , Carbono/análisis , Caragana/crecimiento & desarrollo , Nitrógeno/análisis , Fósforo/análisis , Compuestos Orgánicos/análisis , Nutrientes/análisis , Restauración y Remediación Ambiental/métodos , Secuestro de Carbono , Ecosistema
11.
Ying Yong Sheng Tai Xue Bao ; 35(3): 615-621, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646748

RESUMEN

The aim of this study was to reveal the stoichiometric characteristics of carbon, nitrogen and phosphorus in rhizosphere and non-rhizosphere soils of Pinus sylvestris var. mongolica in the Hulunbuir desert. We investigated the contents and stoichiometry of organic carbon, total nitrogen, and total phosphorus contents of rhizosphere and non-rhizosphere soils across different stand ages (28, 37 and 46 a) of P. sylvestris var. mongolica plantations, with P. sylvestris var. mongolica natural forest as the control. We analyzed the correlation between soils properties and soil stoichiometry. The results showed that rhizosphere effect significantly affected soil N:P, and stand age significantly affected soil organic carbon content in P. sylvestris var. mongolica plantation. Soil organic carbon content in plantation was significantly lower than that in natural forest. Soil organic carbon and total nitrogen contents of plantations in both rhizosphere and non-rhizosphere soils firstly decreased and then increased with increasing stand age, while total phosphorus firstly increased and then decreased in rhizosphere soils, and firstly decreased and then increased in non-rhizosphere soils. There was significant positive correlations between C:N and C:P in rhizosphere soils but not in non-rhizosphere soils, suggesting that higher synergistic rhizosphere soil N and P limitation. The mean N:P values of rhizosphere and non-rhizosphere soils were 4.98 and 8.40, respectively, indicating that the growth of P. sylvestris var. mongolica was restricted by soil N and the rhizosphere soils were more N-restricted. The C:N:P stoichiometry of rhizosphere and non-rhizosphere soils were significantly influenced by soil properties, with available phosphorus being the most important driver. The growth of P. sylvestris var. mongolica was limited by N in the Hulunbuir desert, and root system played an obvious role in enriching and maintaining soil nutrients. It was recommended that soil nitrogen should be supplemented appropriately during the growth stage of P. sylvestris var. mongolica plantation, and phosphorus should be supplemented appropriately according to the synergistic nature of nitrogen and phosphorus limitation.


Asunto(s)
Carbono , Nitrógeno , Fósforo , Pinus sylvestris , Rizosfera , Suelo , Fósforo/análisis , Nitrógeno/análisis , Suelo/química , Carbono/análisis , Pinus sylvestris/crecimiento & desarrollo , Bosques , China , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 648-658, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646752

RESUMEN

Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing'an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.


Asunto(s)
Carbono , Monitoreo del Ambiente , Bosques , Hielos Perennes , Ríos , China , Ríos/química , Carbono/análisis , Ciclo del Carbono , Lluvia/química , Ecosistema
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 695-704, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646757

RESUMEN

To understand the effects of different stover mulching amounts in no-tillage on soil carbon and nitrogen contents and enzyme activities, finding a stover mulching amount which can meet the requirement of soil carbon and nitrogen accumulation while maximizing economic benefits, we conducted a long-term conservation tillage field experiment since 2007 in Mollisols area of Northeast China. We analyzed soil carbon and nitrogen contents, enzyme activities and economic benefits under conventional tillage (Control, CT), no-tillage without stover mulching (NT0), no-tillage with 33% stover mulching (NT33), no-tillage with 67% stover mulching (NT67), and no-tillage with 100% stover mulching (NT100) before planting in May 2020. The results showed that compared with CT, NT0 did not affect soil organic carbon (SOC) and total nitrogen (TN) contents, but increased soil organic carbon recalcitrance and decreased the availability of dissolved organic nitrogen (DON) and ammonium nitrogen. Compared with NT0, no-tillage with stover mulching significantly increased SOC contents in 0-10 cm layer and increased with the amounts of stover. In addition, NT67 and NT100 significantly increased SOC stocks, facilitating the accumulation of soil organic matter. The effects of different stover mulching amounts on soil nitrogen content in 0-10 cm layer were different. Specifically, NT33 increased DON content and DON/TN, NT67 increased DON content, while NT100 increased TN content. Compared with CT, NT0 decreased peroxidase (POD) activity in 0-10 cm layer. Compared with NT0, NT33 increased ß-glucosidase (ßG), cellobiase (CB), 1,4-ß-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO) and POD activities, while NT67 only increased CB, NAG and POD activities in 0-10 cm soil layer, both alleviated microbial nutrient limitation. NT100 increased PPO activity in 10-20 cm layer. NT33 increased carbon conversion efficiency of stover compared with NT100, and had the highest economic benefit. In all, no-tillage with 33% stover mulching was the optimal strategy, which could promote nutrient circulation, boost stover utilization efficiency, improve the quality of Mollisols, and maximize guaranteed income.


Asunto(s)
Agricultura , Carbono , Ciclo del Nitrógeno , Nitrógeno , Suelo , Nitrógeno/metabolismo , Nitrógeno/análisis , Suelo/química , Carbono/metabolismo , Carbono/análisis , Agricultura/métodos , China
14.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646758

RESUMEN

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Asunto(s)
Oryza , Ríos , Suelo , Humedales , Suelo/química , China , Ríos/química , Oryza/crecimiento & desarrollo , Oryza/química , Monitoreo del Ambiente , Agricultura/métodos , Fósforo/análisis , Fósforo/química , Carbono/análisis , Carbono/química
15.
Huan Jing Ke Xue ; 45(5): 2806-2816, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629543

RESUMEN

Net ecosystem productivity (NEP) is an important index for the quantitative evaluation of carbon sources and sinks in terrestrial ecosystems. Based on MOD17A3 and meteorological data, the vegetation NEP was estimated from 2000 to 2021 in the Loess Plateau (LP) and its six ecological subregions of the LP (loess sorghum gully subregions:A1, A2; loess hilly and gully subregions:B1, B2; sandy land and agricultural irrigation subregion:C; and earth-rock mountain and river valley plain subregion:D). Combined with the terrain, remote sensing, and human activity data, Theil-Sen Median trend analysis, correlation analysis, multiple regression residual analysis, and geographic detector were used, respectively, to explore the spatio-temporal characteristics of NEP and its response mechanism to climate, terrain, and human activity. The results showed that:① On the temporal scale, from 2000 to 2021 the annual mean NEP of the LP region (in terms of C) was 104.62 g·(m2·a)-1. The annual mean NEP for both the whole LP and each of the ecological subregions showed a significant increase trend, and the NEP of the LP increased by 6.10 g·(m2·a)-1 during the study period. The highest growth rate of the NEP was 9.04 g·(m2·a)-1, occurring in the A2 subregion of the loess sorghum gully subregions. The subregion C had the lowest growth rate of 2.74 g·(m2·a)-1. Except for the C subregion, all other ecological subregions (A1, A2, B1, B2, and D) were carbon sinks. ② On the spatial scale, the spatial distribution of annual NEP on the LP was significantly different, with the higher NEP distribution in the southeast of the LP and the lower in the northwest of the LP. The high carbon sink area was mainly distributed in the southern part of the loess sorghum gully subregions, and the carbon source area was mainly distributed in the northern part of the loess sorghum gully subregions and most of the C subregion. The high growth rate was mainly distributed in the central and the southern part of the A2 subregion and the southwest part of the B2 subregion. ③ Human activities had the greatest influence on the temporal variation in NEP in the LP and all the ecological subregions, with the correlation coefficient between human activity data and NEP being above 0.80, and the relative contribution rates of human factors was greater than 50%. The spatial distribution was greatly affected by meteorological factors, among which the precipitation and solar radiation were the main factors affecting the spatial changes in the NEP of the LP. The temporal and spatial variations in the NEP in the LP were influenced by natural and human social factors. To some extent, these results can provide a reference for the terrestrial ecosystem in the LP to reduce emissions and increase sinks and to achieve the goal of double carbon.


Asunto(s)
Clima , Ecosistema , Humanos , Tecnología de Sensores Remotos , Arena , Carbono/análisis , China , Cambio Climático
16.
PLoS One ; 19(4): e0302009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38620042

RESUMEN

Phytoliths of biogenic silica play a vital role in the silicon biogeochemical cycle and occlude a fraction of organic carbon. The location, chemical speciation, and quantification of this carbon within phytoliths have remained elusive due to limited direct experimental evidence. In this work, phytoliths (bilobate morphotype) from the sugarcane stalk epidermis are sectioned with a focused ion beam to produce lamellas (≈10 × 10 µm2 size, <500 nm thickness) and probed by synchrotron scanning transmission X-ray microspectroscopy (≈100-200 nm pixel size; energies near the silicon and carbon K-absorption edges). Analysis of the spectral image stacks reveals the complementarity of the silica and carbon spatial distributions, with carbon found at the borders of the lamellas, in islands within the silica, and dispersed in extended regions that can be described as a mixed silica-carbonaceous matrix. Carbon spectra are assigned mainly to lignin-like compounds as well as to proteins. Carbon contents of 3-14 wt.% are estimated from the spectral maps of four distinct phytolith lamellas. The results provide unprecedented spatial and chemical information on the carbon in phytoliths obtained without interference from wet-chemical digestion.


Asunto(s)
Dióxido de Silicio , Silicio , Dióxido de Silicio/química , Rayos X , Carbono/análisis , Sincrotrones
17.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605043

RESUMEN

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Asunto(s)
Secuestro de Carbono , Bosques , Árboles , China , Biomasa , Carbono/análisis
18.
Glob Chang Biol ; 30(4): e17259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655624

RESUMEN

Nature-based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%-9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year-1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7- and 24.8-fold increase in the extent of high-severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision-makers relying on forests as a NCS.


Asunto(s)
Cambio Climático , Tormentas Ciclónicas , Bosques , New England , Carbono/análisis , Secuestro de Carbono , Modelos Teóricos
19.
An Acad Bras Cienc ; 96(1): e20220805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656052

RESUMEN

Piaractus mesopotamicus, is a fish usually farmed in semi-intensive systems with access to natural food and supplementary feed. This study evaluates effects of feed allowance on the productive performance, carbon turnover and proportions of nutrient (carbon) contribution of feed and natural food for the growth of pacu. Juvenile fish were stocked in fiberglass tanks and fed to 100, 75, 50, 25, 0% apparent satiety (ApS), with a practical, extruded (C4 photosynthetic pathway) feed in a randomized design trial (n=3); plankton production for simulated semi-intensive farming system condition was induced by chemical fertilization. A control treatment was set up in tanks devoid of natural food. Data on muscle stable carbon isotope ratios were used to study carbon turnover using a relative growth-based model. Low variation of the δ13C impaired fitting a turnover model curve for the 0 and 25 % ApS treatments. Fish of the 100% and 75% ApS treatments reached circa 95% and 82.85% of the carbon turnover, respectively. Extruded feed was the main nutrient source for the growth of pacu in the semi-intensive, simulated farming condition. The current study contributes to the knowledge of the relationship between feeding rates and carbon turnover rates in the pacu muscle.


Asunto(s)
Alimentación Animal , Isótopos de Carbono , Carbono , Animales , Alimentación Animal/análisis , Carbono/metabolismo , Carbono/análisis , Isótopos de Carbono/análisis , Characidae/fisiología , Characidae/crecimiento & desarrollo , Characidae/metabolismo , Acuicultura/métodos , Fenómenos Fisiológicos Nutricionales de los Animales
20.
Sci Total Environ ; 927: 172076, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575021

RESUMEN

Forests play a crucial role in mitigating climate change through carbon storage and sequestration, though environmental change drivers and management scenarios are likely to influence these contributions across multiple spatial and temporal scales. In this study, we employed three tree growth models-the Richard, Hossfeld, and Korf models-that account for the biological characteristics of trees, alongside national forest inventory (NFI) datasets from 1994 to 2018, to evaluate the carbon sink potential of existing forests and afforested regions in China from 2020 to 2100, assuming multiple afforestation and forest management scenarios. Our results indicate that the Richard, Hossfeld, and Korf models provided a good fit for 26 types of vegetation biomass in both natural and planted Chinese forests. These models estimate that in 2020, carbon stocks in existing Chinese forests are 7.62 ± 0.05 Pg C, equivalent to an average of 44.32 ± 0.32 Mg C/ ha. Our predictions then indicate this total forest carbon stock is expected to increase to 15.51 ± 0.99 Pg C (or 72.26 ± 4.6 Mg C/ha) in 2060, and further to 19.59 ± 1.36 Pg C (or 91.31 ± 6.33 Mg C/ha) in 2100. We also show that plantation management measures, namely tree species replacement, would increase carbon sinks to 0.09 Pg C/ year (contributing 38.9 %) in 2030 and 0.06 Pg C/ year (contributing 32.4 %) in 2060. Afforestation using tree species with strong carbon sink capacity in existing plantations would further significantly increase carbon sinks from 0.02 Pg C/year (contributing 10.3 %) in 2030 to 0.06 Pg C/year (contributing 28.2 %) in 2060. Our results quantify the role plantation management plays in providing a strong increase in forest carbon sequestration at national scales, pointing to afforestation with native tree species with high carbon sequestration as key in achieving China's 2060 carbon neutrality target.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Bosques , Árboles , China , Agricultura Forestal/métodos , Carbono/análisis , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA